Tidal Calculations, Wind, Waves

Rule of $12^{\text {ths }}$

The Rule of $12^{\text {ths }}$ relates to the height of the water over the chart datum during the tidal cycle.

In the six-hour period that separates the low and the high waters, the overall level will rise/fall $1 / 12^{\text {th }}$ of the tidal range in the first hour, an additional $2 / 12^{\text {ths }}$ in the second hour, an additional $3 / 12^{\text {ths }}$ in the third hour, another $3 / 12^{\text {th }}$ in the forth hour, $2 / 12^{\text {th }}$ in the fifth hour and $1 / 12^{\text {th }}$ in the sixth hour.

50/90 Rule

The 50/90 Rule relates to the relative speed of the tidal current during the tidal cycle.

After 1 hour the tidal flow has reached 50\% of its maximum, after 2 hours 90%, and after 3 hours, at half-tide, 100\%.

After 4 hours it slows back to 90%, after 5 hours back to 50% and after 6 hours we have again slack tide with 0%.

Fetch

The length of water over which a given wind has blown

Funnelling Effect

Increased wind speeds when pressed through a narrow opening (mountains, harbour entrance)

Beaufort Scale

Scale for describing wind speeds, ranging from 0 - 12 (4 moderate: 11-16kts; 5 fresh: 17-21kts; 6 strong: 22-27kts).

Spilling Waves / Dumping Waves

Crest spilling down the face of the wave (shallow gradual slope of beach); crest curling over and plunging down the face of the wave (steep beach or sudden change of depth like a sandbar)

Rebound

Wave reflection on cliffs or harbour walls

